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An automatic frequency control (AFC) loop is introduced and analyzed in detail. The
new scheme is a generalization of the well-known Cross-Product AFC loop that uses run-

ning overlapping discrete Fourier transforms (DFTs) to create a discriminator curve.

Linear analysis is included and supported with computer simulations. The algorithm is
tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of

loss of lock is estimated via computer simulations. The algorithm discussed is a subopti-
mum tracking scheme with a larger frequency error variance compared to an optimum

strategy, but offers simplicity of implementation and a very low operating threshoM CNR.
This technique can be applied during the carrier acquisition and re-acquisition process in

the Advanced Receiver.

I. Introduction

Automatic frequency tracking is a subject of great impor-
tance in the fields of communications, control, and signal

processing. For instance, it may provide initial rapid acquisi-
tion in coherent receivers, may supply information on the

velocity of rapidly moving targets, and can be used in con-

junction with channel doppler extractors, just to name a few

applications.

This article presents a study of the fundamental problem of

estimating the frequency of a sinusoidal wave embedded in
noise, subject to severe dynamics. It is well known [1], [2]
that the maximum likelihood estimator (MLE)of a constant

(but unknown) frequency sine wave is equivalent in practice
to a discrete Fourier transform (DFT) operation on the re-

ceived discrete data, the MLE of frequency being the center

frequency of the bin filter in the DFT with maximum output

power. For a stable frequency, arbitrarily good resolution is
obtained by increasing the size of the DFT or, equivalently,

by extending the observation interval. However, when the fre-

quency of the incoming wave is time varying in a random man-
ner, the implementation of a maximum likelihood approach

may be computationally demanding, as discussed in [3], [4].

The object of this article is to propose and analyze a sub-

optimum frequency control loop based on short overlapping
DFTs and suited to track the rapidly varying frequency of a

sine wave. For brevity, the new scheme will be referred to

here as ODAFC (Overlapping Discrete Fourier transform-based

Automatic Frequency Control). This scheme can be thought

of as a generalization of the so-called Quadri-Correlator [5].

The new scheme integrates ideas originating in the fields of

classical spectral estimation and digital phase-locked loop

theory. It will be shown that the ODAFC is capable of track-
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ing the frequency of a carrier signal in a low carrier-to-noise

(CNR) and high dynamic environment where a Phase-Locked

Loop (PLL) is inoperative. Such a situation is foreseeable dur-

ing planetary encounters. In these cases ODAFC will allow

fast carrier re-acquisition and help the resumption of tracking
itself. This is achieved with remarkably modest implementa-

tion complexity, since the algorithm may be implemented in

software and does not require any modification to the Ad-

vanced Receiver (ARX) hardware.

First, as an indicator of the quality of the closed loop esti-

mator, the variance of the loop is computed for a fixed fre-

quency sine wave in the presence of additive white Gaussian

noise (AWGN). Later, the loop is tested with severe dynamics

and noise together, and the probability of loss of lock is esti-

mated. Both analytical answers (whenever possible) and com-

puter simulation results are included for greater confidence.

II. Description of the ODAFC Loop

A. System Block Diagram

A block diagram of the ODAFC loop is shown in Fig. l(a).

An equivalent baseband model is shown in Fig. l(b). The dis-

crete time in-phase and quadrature mixer outputs admit a
representation of the form

/ = A cos (¢n) + n/. (la)

Qn = A sin (_n) + nQ n (lb)

The amplitude A is related to the carrier power viaA 2 =Pc, the

instantaneous phase error is given by en (rad), and the noise

sequences {nln}, {nQn} are independent Gaussian random
variables with zero mean and variance o2 = No/2Ts, where Ts
is the loop update time (henceforth called the sampling inter-

val). The carrier-to-noise ratio is defined as CNR = Pc/No.

Every update time, Ns complex samples are Fourier trans-

formed with Ns zeroes appended. At the tick of the clock, the
data are shifted when another complex sample arrives; a new

discrete Fourier transform is computed (of size 2Ns) , an error
control signal is created and the loop filter is updated. This

process is repeated every sampling interval Ts, each time incor-
porating just one more complex sample. A timing diagram of

the underlying process is illustrated in Fig. 2.

B. On the Discriminator Characteristic

It is well known that the discrete Fourier transform can be

seen as a bank of bandpass filters tuned at multiples of half the
Nyquist rate [6]. In order to create a control signal propor-

tional to the frequency error (discriminator characteristic),

the powers in two adjacent filter bins around zero frequency

are subtracted every sampling interval (a weighted combina-

tion of the filter bin outputs was not selected to facilitate the

implementation). The subtraction of the powers in the bin

filters around zero frequency to create a discriminator curve

as opposed to selecting the bin filter with maximum power

was originally discussed in [7]. The idea of employing run-

ning overlapping DFTs has a connection with the use of the

FFT for the estimation of power spectra based on averaged

periodograms [8].

III. Linear Tracking of the ODAFC Loop
in the Presence of Noise

A. Exact Computation of the Variance of the

Frequency Error

This section focuses on the tracking performance of the

ODAFC loop when the carrier-to-noise ratio is sufficiently

high to justify a linear analysis. A sine wave with constant fre-

quency is assumed for the remainder of the section. The goal

is to compute analytically an expression that predicts the
variance of the closed loop estimator. The results will be con-

firmed by computer simulations.

The closed loop estimator uses the received complex sample

x =/+/Q. (:2)

and computes

k
1 -/2n_nl2N s

Xk,_ = N- E x e
$ n=k_(Ns_l)

A

= RkS +/Mk,_ (3)

The discriminator output at time n = k is given by

¢. +ML,)

k k-- E 5-2. 2(¢o,.-
m=k-(Ns-1) .=k-(Ns-1)

X sin m - n
_, $ 1

which upon expansion results in

P,,_ s,+_,,,

(4)

(5)
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where

Sk = 2 Z Z A2 sin(_bm-_bn)

m=k-(Ns-1 ) n=k-(N$-l )

X sin (_-s (m-n))
(6)

= 2 Z Z Ano,cos( .)
m=k-(Ns-1 ) n=k-(Ns-1 )

+ A n/n sin (_m)" A nlm sin (%)

- A nQ. cos (era) + nln nQm - nQn nIm I

X sm(_ s (m - n (7)

for a fixed frequency error; Sk(') denotes the discriminator
characteristic for the ODAFC loop, and it is given more explic-

itly in Eq. (8).

2_ pln_ 2 -

5/
IL sin_ - 2 _---j_

sin t- -2 +2) 1

- [a_k
sin_

The slope at the origin is

/

, = =I

AWk Ts=O (

(8)

sin

The discriminator characteristic is illustrated in Fig. 3 for a

unit amplitude signal (A = 1) for Ns = 2,4 corresponding to
DFTs of sizes 4 and 8, respectively; notice that a larger slope

for the discriminator at the origin is obtained with larger

DFTs. For a fixed frequency sine wave in the presence of
AWGN, the larger the size of the DFT, the smaller the variance

of the estimator• However, in a dynamic medium, the maxi-

mum permissible size for the DFT is limited by how fast the

center frequency is moving, since larger DFTs have a smaller

linear operating range.

The term Neq,k will be referred to as the additive equivalent
noise. Unfortunately, the typical white noise assumption for

the equivalent noise is not justified here, since there exists a

significant amount of correlation between the noise samples.

It is shown in Appendix A that the correlation function of the

noise sequence (Neq,k} is given by

RNeq(£ ) = 1I=(Neq,k Neq,k+_)

1_4
A 2 a2

l

-8
(N_)4A2

• [. I_1\
sin t--_-s )

0 2

_in (2-_s)l 2 sin(_s)

+ 8 o4(N - I.QI)2

otherwise

• .£ 2

lsm(N-s)l

0 _< I,QI_<N
$

(10)

RNeq(_ ) = 0

With the aid of Fig. 1, it is a straightforward exercise to show

that in operational notation the Z transform of the normalized

radian frequency error is given by

_Xa(z)T = H(z) _(z) T - --
H(z)

s;_(o)
Nq(Z) (11)
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where

S;c(05 F 2 (z ) NCO(z ) kN
H(z) _- (125

1 + Sg(0) F2(z) NCO(z) kN

represents the closed loop transfer function. The loop filter
F(z) considered here has the form

F2(z)
F 1(z) -

1 -z -]

I kl k2 21 1= _ + m _(1 -z-'5 s (osk , r
(13)

where

r(4 BA T)
kl = r+ 1

k2=--
r

r=4_ 2

= damping ratio

B4 = nominal bandwidth (Hz)

and NCO(z) is the mathematical model of the numerically

controlled oscillator and may include computational delays

inherent in a digital implementation. Of particular interest is

the NCO discussed in [9], which conceptually represents the

cascading of an integrator using the trapezoidal rule and two
extra delays.

E(z + 1)
NCO (z) - (14)

2 z2(z - 1)

Since the noise sequence {Neq,k } is stationary, the steady state
variance of the frequency error (Hz) is given by [10], [11] as

[S£(0)] 2 _ .IH(e/W)12 SNeq(eiW)dco

(15)

where the equivalent noise spectral density has the form

Ns-1

SNeq(e/_ ) = _q(0)+ 2 E _q(£)C0S(_6O)

9=1

(16)

Unfortunately, the previous integral does not reduce to a

simple compact expression as in a standard phase-locked loop
[5], and a numerical integration must be used. For illustration

purposes, Fig. 4 shows numerical results, based on Eq. (15),

for Ns = 4 and for a particular mechanization using Ts = 2 ×

10-3 s with nominal bandwidth BA(Hz ) as a parameter. Com-
puter simulation results are also included in the same graph to

confirm the analysis. Notice that for high CNR, the analysis

and the simulations are in excellent agreement.

B. A Useful Approximation for the Variance of the

Frequency Error

A very useful approximation to the variance of the fre-

quency error can be obtained for low to moderate CNR when

the bandwidth of the loop is much smaller than the sampling
rate. The approximation is obtained by expanding the cosirm-

soidal terms of the noise spectral density of Eq. (165 in a
Taylor series and keeping only the significant terms of the

expansion. The result is

2 /2_2/ 1 '_3
(1.7)

where

N-1
$

a = RNeq(0 ) + 2 E RNeq(_) (18)
l=l

N-1
$

b = E _2 RNeq(£ ) (19)
9=1

g2L = 2rr (2BL)

B L = one-sided loop noise bandwidth

The approximation is very tight for small bandwidths

(BL _ 10 Hz) and for low CNRs (_ 30 dB-HzS, and it loosens

as these two parameters increase, until it becomes useless for

CNR ) 50 dB-Hz, as shown in Fig. 4.

IV. Steady State Frequency Errors

The steady state frequency error due to acceleration in fre-

quency can be calculated from Eq. (11) in the absence of noise

using the final value theorem [12]. The input frequency in the
Z domain is given by
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and the steady state error is

J (r + 1)2 1

21t
16 B2 r

where the units of the jerk Jo are in rad/s 3.

V. The ODAFC Loop in a Dynamic
Environment

One of the main reasons for this study was the need to

operate the frequency estimator under severe dynamic condi-
tions at low CNR levels. It is natural to select the probability

of loss of frequency lock as a measure of quality. Once cast

into this form, computer simulations provide the most direct

way to evaluate performance.

A. Dynamic Trajectory

A dynamic trajectory of duration 8 s was developed to

evaluate loop performance. Initially, it is assumed that the

phase, frequency, and frequency rate of the received signal

are perfectly known, i.e., that the loop is in the tracking mode

of operation. The transmitting vehicle then experiences a sud-

den maneuver resulting in an acceleration of 3 s duration and

equivalent to a doppler rate of-1287 Hz/s. For the next 0.5 s,

a frequency acceleration of 5150 Hz/s 2 occurs, followed by a

2 s duration doppler rate of 1287 Hz/s. A frequency accelera-

tion of -5150 Hz/s 2 proceeds for the next 0.5 s, and the
maneuver culminates with a 2-s-duration doppler rate of

-1287 Hz/s.

B. Probability of Loss of Lock for the ODAFC Loop

The probability of losing frequency lock was estimated for

a loop that is initially in-lock and then experiences the phase

trajectory previously described. The simulations were carried

out for various sizes of DFTs, but Ns = 4 was found to have the

lowest possible threshold with this technique. Some simulation

results are presented in Figs. 5 and 6 for Ns = 4 and 8, respec-

tively, as a function of carrier to noise ratio (dB-Hz) with

nominal loop bandwidth as a parameter. For a given CNR
and nominal bandwidth, 250 different simulation runs were

employed. Loss of lock was declared when the instantaneous

frequency error exceeded the one-sided Nyquist bandwidth

I/2T s.

In order to put these results in proper perspective, from [4]
a type-3 digital phase-locked loop (DPLL) with the same phase

trajectory and an optimized bandwidth, has a probability of

O.1 of losing lock at approximately 26 dB-Hz; i.e., the thresh-
old for a DPLL is about 3 dB higher than that of the ODAFC

with Ns = 4. From the same reference, the threshold of a typi-
cal Cross-Product AFC loop is 2.3 dB-Hz higher than that

of the ODAFC.

Estimation of the probability of loss of lock is only a par-

tial performance measure. If in-lock, a phase-locked loop

has typically a better frequency estimation ability than the

ODAFC loop. In Figs. 7 and 8, the rms value for the ODAFC

loop is estimated for the aforementioned trajectory. Notice

that when N s = 8, smaller tracking errors are achieved, but the
threshold is higher. The same effect is noticed for larger values

of iVs. This scheme then suffers from the usual trade-off be-
tween noise suppression and dynamic tracking: the effect of

the noise increases as Ns decreases, while smaller dynamic

errors are obtained as Ns decreases.

Vl. Conclusions

A new automatic frequency control loop was introduced

and discussed. The algorithm (ODAFC) is based on running

overlapping DFTs, and can be viewed as a generalization of the
well-known Cross-Product AFC (CPAFC) loop [7]. In fact,

the CPAFC is a special case of the ODAFC loop when Ns -'- 2.

A detailed noise analysis was presented of the new algo-

rithm for any desired DFT size, and the analysis supported

with computer simulations. In addition, the algorithm was

tested in a noisy dynamic medium, and the probability was
estimated of loss of lock for various configurations for a spe-

cific phase trajectory. It was shown in the text that for this

particular trajectory, a value Ns = 4 minimizes the operating

threshold for this algorithm. In fact, the ODAFC with N s = 4
has a threshold 3 dB-Hz lower than that of a DPLL and com-

parable to that of a maximum likelihood estimator [4], but

with a larger error variance. The implementation complexity

for the ODAFC is substantially simpler than for an optimum

strategy, not even requiring fast Fourier transforms to com-

pute the DFT when N s is small.

In summary, the algorithm discussed in this article is a

suboptimum tracking scheme with increased variance for the

frequency error compared to an optimum strategy, but offers

simplicity of implementation and a very low threshold.
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Appendix A

Correlation Function of the Equivalent Additive Noise for the ODAFC Loop

In this appendix, the autocorrelation function of the

equivalent additive noise for the ODAFC loop is computed for

any lag. The starting point is Eq. (7). The autocorrelation is

given by

RU,q(_) = n:(_q,k _q,k+O

Due to symmetry, the previous correlation reduces to

Ns-1 NS-1 NS-I+_ /'Vs-I+_

RNeq(£ ) _ 16 A2°2E E Z E 6miCmn
m=O n=O i=_ ]=_

N-1 N-1 N-I+Q N-l+l?

l(__sf _._ _ k____ _ I X C//+ 16 o4 5mi= 4 A2 02 _rni = = "= "=

m =k n=k i=k+f2 j=k+_

-(Ns-1) -(Ns-]) -(Ns-I)+_ -(Ns-I)+_ X _ . C C.. (A-5)
n I mn Zl

x cos(% - _,) - A_o_8j cos(_,,,- _,)

- A_o_,_ cos(Ore- 0) +A: °: _.j cos(*m- 0,')

+ 2 o4_nj_mi- 2 04_mj_nil CnCij (A-l)

where

= "11 x =y
_xy (A-2)

( 0 x _y

Cy = sin x-y (A-3)

For linear analysis it is useful to make the approximation

cos (¢x - ¢)y) = 1 in Eq. (A-I); therefore, the correlation func-
tion becomes

N-1 N-1 N-I+_ N-I+Q

RNeq(_) _ 4 Z Z Z Z A2°2_mi

rn=O n=O i=_ ]=_

-A2025 .-A2025 .+A202d .
ml m nl

)

+ 2 04_mi_n] 2 O4- _m]_ni ) Cmnq'J
(A-4)

or, using short notation:

Rueq(_) _ C1fll - C1f12

+ C2 f21- C2 f22

where

and

_1= ZZZZSmiCOS (m-

_2 = ZZZESmicos (m-

_1 = ZZZZ_mi_njCOS_ ( m

)_2 = ZZZE_mi_n]COS (m

n+j-i) 1

n+i-/_

-n+l-i) 1

-n+i-j_

(A-6)

(A-7)

(A-S)
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